Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures from Lattices without Random Oracles

نویسنده

  • Markus Rückert
چکیده

We propose a variant of the “bonsai tree” signature scheme, a lattice-based existentially unforgeable signature scheme in the standard model. Our construction offers the same efficiency as the “bonsai tree” scheme but supports the stronger notion of strong unforgeability. Strong unforgeability demands that the adversary is unable to produce a new message-signature pair (m, s), even if he or she is allowed to see a different signature s′ for m. In particular, we provide the first treeless signature scheme that supports strong unforgeability for the post-quantum era in the standard model. Moreover, we show how to directly implement identity-based, and even hierarchical identity-based, signatures (IBS) in the same strong security model without random oracles. An additional advantage of this direct approach over the usual generic conversion of hierarchical identity-based encryption to IBS is that we can exploit the efficiency of ideal lattices without significantly harming security. We equip all constructions with strong security proofs based on mild worst-case assumptions on lattices and we also propose concrete security parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Unforgeable Signatures Based on Computational Diffie-Hellman

A signature system is said to be strongly unforgeable if the signature is existentially unforgeable and, given signatures on some message m, the adversary cannot produce a new signature on m. Strongly unforgeable signatures are used for constructing chosen-ciphertext secure systems and group signatures. Current efficient constructions in the standard model (i.e. without random oracles) depend o...

متن کامل

(Hierarchical Identity-Based) Threshold Ring Signatures without Random Oracles

We construct the first several efficient threshold ring signatures (TRS) without random oracles. Specializing to a threshold of one, they are the first several efficient ring signatures without random oracles after the only earlier instantiation of Chow, Liu, Wei, and Yuen [22]. Further specializing to a ring of just one user, they are the short (ordinary) signatures without random oracles summ...

متن کامل

A New Hierarchical Identity-based Signature Scheme From Lattices In The Standard Model

Hierarchical identity-based signature (HIBS), which plays an important role in large communities, is a generalization of identity-based signature (IBS). In this paper, we present a new HIBS scheme from lattices without random oracles. The new scheme is proven to be strongly unforgeable against selective identity attacks under the standard hardness assumption of the short integer solution (SIS) ...

متن کامل

Strongly Unforgeable ID-Based Signatures without Random Oracles

In this paper, we construct a strongly unforgeable ID-based signature scheme without random oracles. The signature size of our scheme is smaller than that of other schemes based on varieties of the Diffie–Hellman problem or the discrete logarithm problem. The security of the scheme relies on the difficulty to solve three problems related to the Diffie–Hellman problem and a one-way isomorphism.

متن کامل

Efficient Strongly Unforgeable ID-Based Signature Without Random Oracles

Abstract.Up to date, a large number of ID-based signature (IBS) schemes based on bilinear pairings have been proposed. Most of these IBS schemes possess existential unforgeability under adaptive chosen-message attacks, among which some offer strong unforgeability. An IBS scheme is said to be strongly unforgeable if it possesses existential unforgeability and an adversary who is given signatures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010